Electronic excited states in bilayer graphene double quantum dots.
نویسندگان
چکیده
We report tunneling spectroscopy experiments on a bilayer graphene double quantum dot device that can be tuned by all-graphene lateral gates. The diameter of the two quantum dots are around 50 nm and the constrictions acting as tunneling barriers are 30 nm in width. The double quantum dot features additional energies on the order of 20 meV. Charge stability diagrams allow us to study the tunable interdot coupling energy as well as the spectrum of the electronic excited states on a number of individual triple points over a large energy range. The obtained constant level spacing of 1.75 meV over a wide energy range is in good agreement with the expected single-particle energy spacing in bilayer graphene quantum dots. Finally, we investigate the evolution of the electronic excited states in a parallel magnetic field.
منابع مشابه
M ar 2 00 7 Tunable quantum dots in bilayer graphene
We demonstrate theoretically that quantum dots in bilayers of graphene can be realized. A position-dependent doping breaks the equivalence between the upper and lower layer and lifts the degeneracy of the positive and negative momentum states of the dot. Numerical results show the simultaneous presence of electron and hole confined states for certain doping profiles and a remarkable angular mom...
متن کاملProbing relaxation times in graphene quantum dots
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexpl...
متن کاملBilayer graphene. Electron-hole asymmetric integer and fractional quantum Hall effect in bilayer graphene.
The nature of fractional quantum Hall (FQH) states is determined by the interplay between the Coulomb interaction and the symmetries of the system. The distinct combination of spin, valley, and orbital degeneracies in bilayer graphene is predicted to produce an unusual and tunable sequence of FQH states. Here, we present local electronic compressibility measurements of the FQH effect in the low...
متن کاملOpen Quantum Dots in Graphene: Scaling Relativistic Pointer States
Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not “washed out” through interaction with the environment—the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highl...
متن کاملSignatures of single quantum dots in graphene nanoribbons within the quantum Hall regime† †Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00187D Click here for additional data file.
We report on the observation of periodic conductance oscillations near quantum Hall plateaus in suspended graphene nanoribbons. They are attributed to single quantum dots that are formed in the narrowest part of the ribbon, in the valleys and hills of a disorder potential. In a wide flake with two gates, a double-dot system's signature has been observed. Electrostatic confinement is enabled in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 11 9 شماره
صفحات -
تاریخ انتشار 2011